Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 10947, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768457

RESUMO

Individuals with below-knee amputation (BKA) experience increased physical effort when walking, and the use of a robotic ankle-foot prosthesis (AFP) can reduce such effort. The walking effort could be further reduced if the robot is personalized to the wearer using human-in-the-loop (HIL) optimization of wearable robot parameters. The conventional physiological measurement, however, requires a long estimation time, hampering real-time optimization due to the limited experimental time budget. This study hypothesized that a function of foot contact force, the symmetric foot force-time integral (FFTI), could be used as a cost function for HIL optimization to rapidly estimate the physical effort of walking. We found that the new cost function presents a reasonable correlation with measured metabolic cost. When we employed the new cost function in HIL ankle-foot prosthesis stiffness parameter optimization, 8 individuals with simulated amputation reduced their metabolic cost of walking, greater than 15% (p < 0.02), compared to the weight-based and control-off conditions. The symmetry cost using the FFTI percentage was lower for the optimal condition, compared to all other conditions (p < 0.05). This study suggests that foot force-time integral symmetry using foot pressure sensors can be used as a cost function when optimizing a wearable robot parameter.


Assuntos
Membros Artificiais , Dispositivos Eletrônicos Vestíveis , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Marcha/fisiologia , Humanos , Caminhada/fisiologia
2.
Opt Express ; 29(2): 1333-1339, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726351

RESUMO

We report an ultrathin arrayed camera (UAC) for high-contrast near infrared (NIR) imaging by using microlens arrays with a multilayered light absorber. The UAC consists of a multilayered composite light absorber, inverted microlenses, gap-alumina spacers and a planar CMOS image sensor. The multilayered light absorber was fabricated through lift-off and repeated photolithography processes. The experimental results demonstrate that the image contrast is increased by 4.48 times and the MTF 50 is increased by 2.03 times by eliminating optical noise between microlenses through the light absorber. The NIR imaging of UAC successfully allows distinguishing the security strip of authentic bill and the blood vessel of finger. The ultrathin camera offers a new route for diverse applications in biometric, surveillance, and biomedical imaging.


Assuntos
Fotografação/instrumentação , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Desenho de Equipamento , Lentes
3.
Materials (Basel) ; 13(11)2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32517341

RESUMO

Highly aligned multi-walled carbon nanotube (MWCNT) polymer composites were fabricated via a roll-to-roll milling process; the alignment of the MWCNTs could be controlled by varying the speed of the rotating rolls. The effect of MWCNT alignment on the polymer matrix was morphologically observed and quantitatively characterized using polarized Raman spectroscopy. To provide a more detailed comparison, MWCNT composites with alignment in the transverse direction and random alignment were fabricated and tested. Enhanced mechanical and electrical properties were obtained for the aligned MWCNT composite, which can be attributed to the efficient electrical network and load transfer, respectively. In addition, a cyclic stretching test was conducted to evaluate the piezo-resistive characteristics of the aligned MWCNT composites. The composites with an aligned filler configuration showed an exceptionally high degree of strain sensitivity compared to the other composites.

4.
Light Sci Appl ; 9: 28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140219

RESUMO

Compound eyes found in insects provide intriguing sources of biological inspiration for miniaturised imaging systems. Here, we report an ultrathin arrayed camera inspired by insect eye structures for high-contrast and super-resolution imaging. The ultrathin camera features micro-optical elements (MOEs), i.e., inverted microlenses, multilayered pinhole arrays, and gap spacers on an image sensor. The MOE was fabricated by using repeated photolithography and thermal reflow. The fully packaged camera shows a total track length of 740 µm and a field-of-view (FOV) of 73°. The experimental results demonstrate that the multilayered pinhole of the MOE allows high-contrast imaging by eliminating the optical crosstalk between microlenses. The integral image reconstructed from array images clearly increases the modulation transfer function (MTF) by ~1.57 times compared to that of a single channel image in the ultrathin camera. This ultrathin arrayed camera provides a novel and practical direction for diverse mobile, surveillance or medical applications.

5.
Sensors (Basel) ; 19(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847062

RESUMO

Measuring the foot plantar pressure has the potential to be an important tool in many areas such as enhancing sports performance, diagnosing diseases, and rehabilitation. In general, the plantar pressure sensor should have robustness, durability, and high repeatability, as it should measure the pressure due to body weight. Here, we present a novel insole foot plantar pressure sensor using a highly sensitive crack-based strain sensor. The sensor is made of elastomer, stainless steel, a crack-based sensor, and a 3D-printed frame. Insoles are made of elastomer with Shore A 40, which is used as part of the sensor, to distribute the load to the sensor. The 3D-printed frame and stainless steel prevent breakage of the crack-based sensor and enable elastic behavior. The sensor response is highly repeatable and shows excellent durability even after 20,000 cycles. We show that the insole pressure sensor can be used as a real-time monitoring system using the pressure visualization program.


Assuntos
Órtoses do Pé , Desenho de Equipamento , Marcha/fisiologia , Humanos , Modelos Teóricos , Pressão , Impressão Tridimensional
6.
Polymers (Basel) ; 11(12)2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31847400

RESUMO

We developed a multi-functional graphene composite with electromagnetic interference (EMI) shielding and de-icing properties. Two-dimensional graphene fillers were homogeneously dispersed in a polymer by three-roll milling. The electrical properties and percolation threshold of the graphene composites were measured with various graphene contents. The variation in the EMI shielding properties of the graphene composites with respect to the filler content was measured. The shielding efficiency improved with increasing graphene filler content. Furthermore, we conducted electrical heating tests on the graphene composites. The composites could be heated rapidly to 200 °C by electrical Joule heating with low electric power because of the high electrical conductivity of the composite. Moreover, the composite film was suitable for application in a de-icing unit because of its rapid and homogenous heating performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...